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Abstract:The maintenance scheduling of thermal generators is a large-scale combinatorial 
optimization problem with constraints. In this paper we introduce the Rank-Based Ant System 
algorithm based version of the Ant System. This algorithm reinforces local search in neighborhood of 
the best solution found in each iteration while implementing methods to slow convergence and 
facilitate exploration.Rank-Based Ant System (RBAS) algorithm has been proved to be very effective 
in finding optimum solution to hard combinational optimization problems  . To show its efficiency and 
effectiveness, the proposed Rank-Based Ant System algorithm is applied to a real-scale system, and 
further experimenting leads to results that are commented. 
Key-Words:  thermal generator maintenance scheduling problem; ant colony optimization; ant 
system,rank-based ant system algorithm 
 

 
1.Introduction 
The Thermal Generator Maintenance 
Scheduling Problem is a complex 
multivariable problem that is necessary 
for the reliability and right operation of 
a generator system, given that the 
whole production cost is dependent on 
the maintenance and operation cost. 
Thus, the maintenance procedure has to 
be scheduled and complied with the 
best possible way, minimizing these 
two costs and at the same time, 
covering the energy demands, so as 
every constraint of the problem is 
satisfied. 
The problem has been studied in the past 
with a variety of modeling methods. The 
initial formulation was made by Gruhl [1], 
[2]. He presented an umbrella of 
scheduling problems, one of which was the 
generator maintenance scheduling 
problem, with a linear approach. 
Two years later, Dopazo and Merill [3] 
developed a model which was claimed to 

have the ability of finding the best 
solution, but this approach was lacking in 
real-scale problems application, something 
that Zurn and Quintana [4] later achieved 
to do using computational methods.  
In 1983, Yamayee and Sidenblad [5] 
improved the cost function that was used 
till then, with great improvements in 
execution time.  
In 1991, Satoh and Nara [6] applied for the 
first time a stochastic method, called 
Simulated Annealing with very good 
results in large-scale systems as well, that 
were impossible to be solved with linear 
methods in the past. They also investigated 
the problem with genetic algorithms [7] 
and tabu-list methods [8] with similar 
results, but with the ability to solve real-
scale problems, too.  
In 1993, Charest and Ferland [9] tried to 
modify the linear method with successful 
results in execution time, while Dahal and 
McDonald [10] applied a genetic algorithm 
in Boolean representation [11] which had 
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also some good results. In 1997, Burke and 
Smith [12] tried to create a hybrid model 
of the simulated annealing and the tabu-list 
method without success, following another 
attempt to make another hybrid model with 
memetic and tabu-list methods three years 
later, which resulted in better results, but 
with a small increase in execution time. 
In 2010  Y.Yare.,G.K.Venayagamoorthy 
[13] using multiple swarms-MDPSO 
framework with good results for Optimal 
maintenance scheduling of generators 
problem. 
In 2011, Saraiva, Pereiva, Mendes, and 
Sousa [14] solved the generator 
maintenance scheduling problem using a 
simulated annealing algorithm. 
In this paper, we introduce Rank-Based 
Ant System algorithm [15], an imported 
version of basic Ant System [16] of the 
family algorithms: Ant Colony 
Optimization (ACO) [17], which was 
inspired by the observation of ant colonies.  

 
 

2.Ant Colony Optimization             
2.1 Generally Analogy 
The Ant Colony Optimization (ACO) [18] 
is a metaheuristic to solve combinatorial 
optimization problems, is motivated by the 
behavior of real ant colonies. When ants 
attempt to find short paths between their 
nest and food sources, they communicate 
indirectly by using pheromone (pheromone 
trail) to mark the decisions they made 
when building their respective paths. 
Within ACO algorithms, the optimization 
problem is represented as a complete 
weighted graph G = (N,A) with N being 
the set of nodes and A the set of edges fully 
connecting the nodes N. In the Travelling 
Salesman Problem (TSP) application, 
edges have a cost associated (e.g. their 
length) and the problem is to find a 
minimal-length closed tour that visits all 
the nodes once and only once. In order to 
solve the problem, random walks of a fixed 
number of ants through the graph take 

place. The transition probabilities of each 
ant are governed by two parameters 
associated to the edges of the graph: the 
pheromone values (or pheromone trail) τij, 
representing the learned desirability of 
choosing node j when in node i. inverse of 
the distance between two nodes i and j: 

1
ij

ij

n =
d

  where ijd  is the distance between 

these two nodes. 
The more distinctive feature of ACO is the 
management of pheromone trails that are 
used, in conjunction with the objective 
function, to construct new solutions. 
Informally, the pheromone trails are used 
for exploration and exploitation. 
Exploration representing the probabilistic 
choice of the components used to construct 
a solution. A higher probability is given to 
elements with a strong pheromone trail. 
Exploitation is based on the choice of the 
component that maximizes ablend of 
pheromone-trail values and partial 
objective function evaluations. The 
mathematical formulations of the ACO 
algorithms presented in this paper named 
Ant System (AS) and Max-Min Ant 
System (MMAS), are given in the 
following sections. 
 
 
2.2 Ant System 
Ant System (AS) [19] is the original and 
most simplistic ACO algorithm. The 
decision policy used within AS is as 
follows: The probability with which ant k, 
currently at node i, chooses to go to node j 
is given [16] by: 
 

(1) 
[ ] [ ]

( )1
α β

ij ijk
ij α β

ιl il
kl Ji

τ (t) n
p (t)=

τ (t) n
∈

   ⋅   
⋅∑

 

 
 If  j є k

iJ    and 0 if k
ij J∉  
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:k
iJ  is the feasible neighborhood of ant k, 

that is, the set of nodes which ant k has not 
yet visited. 

ijτ (t)  : is the concentration of pheromone 
associated with edge (i,j) in iteration t. 

:ijn  is the inverse of the length of the edge 
known as visibility 
α  and β: are parameters that control the 
relative importance of pheromone intensity 
versus visibility 
Upon conclusion of an iteration (i.e. each 
ant has generated a solution) the 
pheromone on each edge is updated, 
according to the following formula: 
 
(2) ( )2ij ij ijτ (t)= ρτ (t)+ Δτ (t)  
                                                                  
Where ρ is the coefficient representing 
pheromone persistence (0 ≤ ρ < 1), and  

ijΔτ , is a function of the solutions found at 
iteration t, given by:   

(3) ( )
1

3
n

k
ij ij

k=
Δτ = Δτ (t)∑  

          
n: number of ants 

:k
ijΔτ is the quantity per unit of length of 

pheromone addition laid on edge (i,j) by 
the kth ant at the end of iteration t, is given 
by:     
Where kT (t) is the tour done by ant k at 
iteration t, 
 kL (t) , is its length and 
 Q is a constant parameter, used for 
defining to be of high quality solutions 
with low   cost.        
 
(4)  

( ),     if ( , )  ( )( )                            (4)
     0,         if ( , )  ( ) 

k kk
ij

k

Q
L t i j T tt

i j T t
τ


 ∈∆ = 
 ∉

 

 
 
2.3 Rank-Based Ant System Algorithm 
(Bullnheimer,Hartl and Strauss) 
[15],proposed the RBAS algorithm which  
is a modification of the AS algorithm. The 

RBAS algorithm uses a rank idea to update 
the pheromone trail. 
The RBAS search mechanism can be 
divided into : 

(1) Initialization. 
(2) Transition rule. 
(3) Pheromone update 

rule. 
 
(1) Initialization. 
The pheromone initialization strategy is to 
initialize the pheromone matrix of RBAS 
algorithm. As elements using a constant  
value [19,20,21]: 
 
(5) ( )0 5ijτ τ , i, j← ∀  

  
          

(2)  Transition rule. 
Let denote for each arc (i,j) in the TSP-
instance  graph a heuristic value and  
pheromone value. Ant k at node I chooses 
next node j according the following 
transition rule  . 
 
 
  

(6)  
β

iu iu 0u

0

arg max [η ] }, q q

,

k
iJ

if
j

J if q q

τ
∈

 ≤= 
>

  

 
  
                                    

   
  

And J  in k
iJ   is a node that is randomly 

selected according  to the probability :   

(7) ( ) ( ) [ ]
( ) [ ]

( )7
α β

iJ iJ
α β

il il

τ t nk
P t =

ij τ t n

⋅  
⋅  ∑

 

 
 
Where q is a random variable uniformly 
distributed over [0,1], 0q    is a parameter  
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( 00 1q≤ ≤ )  .The value of parameters    α    
and   β    ( 0α >  ,  0β > ),determines the 
relative importance of pheromone and 
heuristic information (visibility).      
When 0q  is equal to 1, the ants will exploit 
the known information about the nodes and 
the pheromone whereas,when 0q is equal 
to 0,the ants will splore more in the 
neighborhood of node i. 
 
 
(3) Pheromone update rule. 
The difference between the Ant System 
(AS) and Rank-Based Ant System (RBAS) 
algorithm is : 
 
• In the RBAS algorithm  each ant 

deposits a quantity of pheromone that 
decreases with rank. 

• The amount of pheromone an ant 
deposits is weighted  according to the 
rank of the ant. 

•  In its iteration only the Λ = σ – 1 best-
ranked ants and the ant that produced 
are allowed to deposit the pheromone. 

 
In RBAS algorithm the pheromone level is 
updated as follows:     
(8) ( ) ( ) ( ) ( )11 8ij ij i

k

τ t+ τ t + σ λ
L

← − ⋅  

Where :       
kL : is the cost of the solution. 

σ : is the weight of the pheromone witch  
corresponding  in the best-so-far tour 

iσ λ− : is the weight for iλ th− best ant. 
Λ = σ - 1: is the number of the best ants 
that generated the best-so-far tour.. 
 
After each iteration of the RBAS 
algorithm,when all ants have built a route-
solution an  a local update procedure can 
be  performed reducing the quantity of 
pheromone  in  corresponding route using  
a parameter  ξ : 0 1< ξ ≤ according to the 
expression [9] :  

(9) ( ) ( )9ij ijτ t ξ τ← ⋅  
 
Finally, for all routes-solutions the 
pheromone trail reduces as follows:       
(10)  ( ) ( ) ( ) ( )1 10ij ijτ t τ tρ← − ⋅  
 The ρ∈(0,1) is called evaporation 
coefficient. 
                                      
  
3.Formulation of the problem 
The objective of the Thermal Generator 
Maintenance Scheduling Problem is the 
maintenance of the energy production units 
of a system in a given horizon, with the 
lowest possible cost. 
The list of symbols that describe the 
problem is as follows[22,23]: 
i : Number of generator 
Ι : Number of  generators 
j : Number of week 
xi : Maintenance start period; xi ∈ {1,2, 
…,J} 
J : Horizon in weeks 
Xi : Set of proposed maintenance start 
periods in weeks 
Mi : Maintenance length in weeks 
Yij : State variable: 

1 , int

0 ,
ij

if unit i is in ma enance
at period j
otherwise

−
Υ = 



   
pij : power output of unit-i at period-j 
fi : fuel cost coefficient (linear cost 
function) 
ci(xi) : maintenance cost of unit-i when the 
maintenance is committed at period ix  
Pi : capacity of unit i 
Dj : anticipated power demand at period-j 
Rj : required power reserve at period-j 
 
The generator maintenance scheduling 
problem is formulated as shown below: 
 
Objective function 
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The objective is to minimize the objective 
function which is the sum of the following 
two terms: 

(12) 
1 1 1

ni
I J I

M i ij i i
i= j= i=

f p + c (x )
 

⋅ 
 

∑∑ ∑   

                                                            
Where the first term is the production cost 
and the second is the maintenance cost. 
 
Constraints 

1) The nominal starting period of 
maintenance is pre-specified for each 
generating unit: (13)
 { }1,2 ...i ix X , ,J∈ ⊆   
    

2) Once the maintenance of unit-i 
starts, the unit must be in the 
maintenance state for just iM  
periods: 

(14) 
0, 1, 2,..., 1
1, ,..., 1
0, ,...,

i i i

i i

j x
ij j x x M

j x M J

= −
Υ = = + −
 = +

 

     
3) If unit- 1i  and unit- 2i  cannot be 

maintained in a given week 
because of the crew constraint, the 
following constraint is imposed: 
 

(15) 1 1,2 ...(i1)j (i2)jY +Y , j = , ,J≤  
      

4) If the maintenance of unit- 1i  must 
be finished prior to the starting of 
that of unit- 2i , the following 
constraint is added: 
 

(16) i1 i1 i2x + M x≤   
     

5) The generator output must be less 
than its upper limit; and the output 
of the generator in maintenance 
must be equal to zero. Such an 
operation constraint is expressed 
by:  
 

(17) 0 1 1,... 1,...ij i ijp P ( y ) , i = ,I, j = ,J≤ ≤ ⋅ −  
     

6) The demand constraint must be 
met: 

(18) 
1

1,2 ...
I

ij j
i=

p = D , j = , ,J∑  

      
7) In order to ensure that the total 

available power is greater than the 
demand jD  even when a unit 
random outage occurs, the reserve 
constraints are imposed. That is, 
the total available power from units 
which are not committed must be 
greater than the demand plus 
reserve: 
 

(19) 
1

1 1,2 ...
I

i ij j j
i=

P ( y ) D + R , j = , ,J⋅ − ≥∑
    
 
Penalty Function 
In the generator maintenance scheduling 
problem, the constraints are classified into 
two groups; “easy” constraints and 
“difficult” constraints. The easy constraints 
are equations (13), (14), (16), (17), the 
difficult constraints are equations (15), 
(18), (19). Since the set iX  is given, the 
value of ix  can be selected as a member of 

iX  so that equations (13), (16) are 
satisfied. Then the value of ijy  is directly 
defined by equation (14), and equation 
(17) becomes a simple bound on ijp . On 
the other hand, it is very difficult to find a 
feasible solution which satisfies 
equations(15), (18) and (19). So, the 
artificial variables iz , iu , and iv  are 
introduced corresponding to equations 
(15), (18) and (19), with associated 
positive penalty parameters α, β, and γ. 
Then the problem is re-formulated as 
follows: 
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(20) 




















⋅+⋅+⋅+

+⋅

∑ ∑∑

∑∑∑

= ==

== =

J

j

J

j
ii

J

j
i

i

I

i
i

I

i
i j

J

j
i

vuz

xcpf

M i n
1 11

11 1
)(

γβα

                                    
(21)  { }1,2 ...i ix X , ,J∈ ⊆              
                                                    
 

(22) 
0, 1, 2,..., 1
1, ,..., 1
0, ,...,

i i i

i i

j x
ij j x x M

j x M J

= −
Υ = = + −
 = +

 

                                                
(23)  1 1,2 ...(i1)j (i2)j jY +Y z , j = , ,J− ≤   
                                          
(24) i1 i1 i2x + M x≤         
                                               
(25) 0 1 1,... 1,...ij i ijp P ( y ) , i = ,I, j = ,J≤ ≤ ⋅ −

                                               

(26) 
1

1,2 ...
I

ij j j
i=

p +u = D , j = , ,J∑      

                                                                               
(27)  

1
1 1,2 ...

I

i ij j j j
i=

P ( y )+v D + R , j = , ,J⋅ − ≥∑    

                                                         
(28) { }0,1nz ∈             
                                                           
(29) 0 1,2 ...j j ju , v , j = , ,J≥  
                                                                  
 
By using the above formulation, once the 
value of ix  is determined, the value of ijy  
is directly defined, and the value of ijp  is 
calculated through the equal incremental 
method λ for the economic dispatch 
problem [24]. Therefore, the value of the 
objective function can be efficiently 
evaluated if the value of ix  is specified. 
 
 
4. Implementation of  RBAS  
algorithm for the generator 
maintenance scheduling 

 
4.1 Expression Approach 
For the implementation of the problem, we 
used a sort of graph. Every node of the 
graph represents a feasible solution, and 
more specifically a feasible week that the 
maintenance of every generator can be 
started. In this way, every ant traverses one 
by one the generator units, choosing one of 
the feasible maintenance starting periods 
and, in the end, constructing a complete 
solution. When all ants complete their 
tours, the iteration is completed and a new 
one takes place. 
  
 
Figure1. Representation of the problem 
using graph 

1I
2I

mI
1t

Local update – Ant-cycle for m-ants

2t

nt

Start End

1t

2t

1t

2t

nt
nt

Global update – for all iterations

 
So, on every step, all units are selected, 
and the total cost of the solution is 
calculated, summing up the total 
maintenance cost, plus the total generator 
operation cost needed for every week (plus 
the penalty of erroneous solutions, if any).  

 
When the kth ant is on town i, the 
probability to move to town j, is given by 
the equation: 
 

(12) 

 

pk
ij (t)=

[τ ij (t)]
a ⋅ [ηij ]

β

[τ
ij
(t)]a ⋅ [η

ij
]β

j ∈ ji
k (t )

∑
,if j ∈ ji

k (t)

0 ,if j ∉ ji
k (t)

 

 

 
 

 

 
 

                                           

where k
ij  are the towns that are not yet 

included on the agent’s tabu list . 
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As visibility 
ij
η between towns, we will 

use the equation 1
1ij

ij

η (t)=
+ PCV (t)

 

where 
ij

PCV (t)  is a method counting the 

total number of the Problem Constraint 
Violations. We will bias each constraint 
violation using weights which correspond 
to the relative importance of each 
constraint. Thus, each ant will be guided as 
to not choose the towns that violate the 
problem’s constraints. 
 
     
4.2 The Algorithm 
1. Define problem parameters for each 
agent and generator. 
2. Calculation of the first solution for each 
unit. 
3.Evaluation of the solution constructed by 
each ant and classification of the ants 
according to the solution they found. 
4. Renewal of the amount of pheromone 
from the ants that found the best solutions. 
5. Pheromone reduction in the best routes-
solutions according to factor ξ. 
6. Global pheromone reduction according 
to factor p. 
7. Select a new ant. 
8. Repeat the algorithm from step 3 until a 
specific number of iterations is completed, 
or a criterion of convergence is satisfied. 
 
 
5.Case study on a real – scale 
system of generators  
The algorithm just described, was 
implemented on a real scale system of 
generator units [25] with 22 power 
generator units that have to be maintained 
within a 52-week horizon. 

 The following table shows the 
parameters that describe every generator 
unit’s operation and maintenance: 
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Table 1. System parameters 
Ι iR  iE  iL  iM  a b c iv  Crew constraint for every 

maintenance week 
1 100 1 47 6 70 8.00 0.00585 0.25 10+10+10+5+5+5 

2 100 1 50 3 70 8.00 0.00580 0.20 15+15+15 
3 100 1 50 3 70 8.00 0.00580 0.20 10+15+15 
4 100 1 50 3 70 8.00 0.00580 0.20 10+10+10 
5 90 1 47 6 60 8.00 0.00610 0.35 10+10+10+5+5+5 
6 90 1 49 4 60 8.00 0.00610 0.30 10+10+10+10 
7 95 1 50 3 68 8.00 0.00579 0.20 10+10+10 
8 100 1 49 4 72 8.00 0.00565 0.20 10+10+5+5 
9 650 27 48 5 525 7.00 0.00120 0.52 10+10+10+5+5 

10 610 6 11 12 510 7.20. 0.00142 0.50 3+2+2+2+2+2+2+2+2+2+2+3 
11 91 1 49 4 62 8.25 0.00600 0.20 10+10+10+10 
12 100 1 45 8 74 8.15 0.00578 0.30 10+10+5+5+5+5+5+3 
13 100 1 50 3 70 8.00 0.00580 0.20 15+15+15 
14 100 1 47 6 70 8.00 0.00585 0.25 10+10+10+5+5+5 
15 220 1 48 5 85 7.90 0.00460 0.25 10+10+10+10+10 
16 220 1 47 6 87 7.95 0.00464 0.25 10+10+10+5+5+5 
17 100 1 48 5 69 8.18 0.00570 0.20 10+10+10+10+10 
18 100 1 48 5 69 8.17 0,00572 0.25 10+10+10+5+5 
19 220 1 50 3 81 7.90 0.00463 0.25 10+10+10 
20 220 1 50 3 82 7.95 0.00462 0.25 10+15+15 
21 240 1 50 3 82 7.40 0.00410 0.30 15+15+15 

22 240 1 48 5 80 7.42 0.00415 0.30 10+10+10+5+5 
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Table 2. Weekly demand   
j Demand jD  j Demand jD  

1 1694 27 1737 

2 1714 28 1927 
3 1844 29 2137 
4 1694 30 1927 
5 1684 31 1907 
6 1763 32 1888 
7 1663 33 1818 
8 1583 34 1848 
9 1543 35 2118 

10 1586 36 1879 
11 1690 37 2089 
12 1496 38 1989 
13 1456 39 1999 
14 1396 40 1982 
15 1443 41 1672 
16 1273 42 1782 
17 1263 43 1772 
18 1655 44 1556 
19 1695 45 1706 
20 1675 46 1806 
21 1805 47 1826 
22 1705 48 1906 
23 1766 49 1999 
24 1946 50 2109 
25 2116 51 2209 
26 1916 52 1779 

 
where: 

iR  the highest level of energy can be 
produced.  

iE  and iL  the earliest and latest period 
that the maintenance can start.  

iM the maintenance period length (in 
weeks). 
a, b, c, the cost parameters for the 
operation of the generators. 

iv  the fuel cost coefficient (linear 
function). 
and, finally, the maintenance crew needed 
for every maintenance week. 
The minimum level of energy that can be 

produced from each generator is zero. 
Table 2, also, represents the anticipated 
demand of the system for every week 
within the horizon. 
It is worth mentioning that the required 
reserve for each week of the horizon can 
be defined using one of the following 
approaches: 

ι. As a constant percentage of the energy 
demand, jD . 

ιι. As equal to the size of the largest 
generating unit. 

ιιι. In dependence of other necessary criteria. 
Here, we applied the first approach, with 

a 20% percentage on demand jD .  
That is: 20 1,2 ...j jR = D , j = , ,J⋅  
It is important to define some determinant 
parameters for the solution of the problem 
from the beginning. The following 
executions of the problem are looking into 
the following matters: 

• As we are working on a real system, 
it is easy to appreciate the fact that we 
need a maintenance crew constraint 
that will be: 
o  “Flexible”, concerning the 

solutions that can be produced, 
without confining them. 

o Big enough to produce solutions 
without violations-penalties and, 
respectively, non-feasible. 

o Small enough so as to minimize the 
existence of not needed crew. 

For all these reasons, after close study of 
the problem constraint table and the 
solutions produced, the crew number was 
set to 30. 
• As we can see, the objective function 

describes the constraint violations as 
extra cost added to the production cost. 
As these solutions are not feasible, we 
have to define the size of the 
parameters α, β and γ to be analogous 
with the solution cost of the problem, 
so as to be added an extra cost feasible 
to reject them. After experimental 
executions, we found that a solution 
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without violations is in the order of 
hundreds millions cost units (108). So, 
for as much as each violation can 
occasionally occur, the parameters 
were defined as follows: 
• α = 100 
• β = 100 
• γ =  20 

 
 
6.Case study 
The algorithm just described,was 
implemented on a real scale system of 
generator units [20] with  22 power 
generator units that have to be maintained 
within a  52 week horizon. The definition 
of the weight parameter α in regard to the 
weight parameter β, is also essential. The 
following values were tested with β=1: 
represent the results given by experimental 
executions,in Table 3 and in Figure 2.                                           

                                                                            
                        

α Best Cost 
0.01 3.31590000 
0.02 3.31180000 
0.03 3.33420000 
0.05 3.34530000 
0.1 3.34230000 
0.2 3.34640000 
0.3 3.34660000 
0.4 3.34830000 
0.6 3.34570000 
0.8 3.34650000 
1 3.34470000 

 
 
     
 
 
 

 
When α=0,02, β=1, ρ=0.3 , Λ=11=25% 
of the ants, the relation between ξ and 
Best Cost is given in Table 4 and in  
Figure 3. 
 

 
 

 
ξ Best Cost 

0.1 3.34490000 
0.3 3.34560000 
0.5 3.32700000 
0.7 3.31180000 
0.9 3.34230000 
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For α = 0,02, β = 1, p = 0,3, Λ = 11 = 
25% of the ants , ξ = 0,7. The relation  
between and Best Cost is given in Table 
5 and in  Figure 4. 

                                                  
      
 
Figure 
4. 

0q vers
us Best 
Cost                                                                                                                                                                                         
 

Figure 4. 0q versus Best Cost                                                                                                                                                                                         
 
 
 
 
 
 
 
                                                          

                                                                  
 
 
 

 

 
 
 

The execution of the proposed method was 
run on an AMD Athlon 3000+ 1.79 GHz 
processor giving the following results: 
• The best solution found is  
 [28, 49, 7, 14, 33, 17, 29, 42, 45, 10, 46, 37, 
11, 13, 1, 29, 16, 39, 27, 6, 24, 37] 
 
That is the period that maintenance for 
every unit of the system can start . The best 
solution cost found is 3.31180000 
• The maintenance periods are 

represented in detail on the Figure 5.  
 

Figure 5. Maintenance periods of Best 
solution 

 
 

where the feasible maintenance periods are 
represented with “x” and the selected 
maintenance periods with “*” according to 
the best solution. 
 
The best solution was found on iteration 
number 296. 
 
• The best solution progress versus 

iterations is represented in Figure 6.  
 
 
 
 
 
 
 

qo Best Cost 
0.1 3.34490000 
0.3 3.31180000 
0.5 3.32170000 
0.7 3.34280000 
0.9 3.33930000 
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Figure 6. Solution cost versus Iterations 

 
• The total execution time is  0h:6 m:13s.   

                 
 
                7. Conclusion 

This paper looked into the Thermal 
Generator Maintenance Scheduling 
Problem of a real-scale system of energy 
production units. The problem has been 
studied with many mathematical and 
heuristic approaches in the past. In this 
project, we seek better results using the 
Rank-Based Ant System algorithm which 
belongs to the Ant Colony Optimization 
algorithms. 

The results produced prove that the 
algorithm can be applied successfully to 
the problem so as the optimum solutions 
can be found, even in real energy 
production systems where the complexity 
raises significantly, because of the number 
of generating units, but also due to the 
number of feasible solutions that have to 
be produced in a reasonable time interval. 
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